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Abstract1

Evolutionary rescue occurs when a population, facing a sudden environmental change that would otherwise lead to extinction, adapts through
beneficial mutations, allowing it to recover and persist. A prime example of evolutionary rescue is the ability of cancer to survive exposure to
treatment. One evolutionary mechanism by which a population of cancer cells can adapt to chemotherapy is aneuploidy. Aneuploid cancer cells
can be more fit in an environment altered by anti-cancer drugs, in part because aneuploidy may disrupt the pathways targeted by the drugs.
Indeed, aneuploidy is highly prevalent in tumors, and some anti-cancer drugs fight cancer by increasing chromosomal instability. Here, we
model the impact of aneuploidy on the fate of a population of cancer cells. We use multi-type branching processes to approximate the probability
that a tumor survives drug treatment as a function of the initial tumor size, the rates at which aneuploidy and other beneficial mutations occur,
and the growth rates of the drug-sensitive and drug-resistant cells. We also investigate the effect of the pre-existent aneuploid cells on the
probability of evolutionary rescue. Finally, we estimate the tumor’s mean recurrence time to revert to its initial size following treatment and
evolutionary rescue. We propose that aneuploidy can play an essential role in the relapse of smaller secondary tumors.
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Introduction1

Aneuploidy in cancer. Each year, approximately 10 million peo-2

ple die from cancer globally (Kocarnik et al. 2022). Understand-3

ing the factors that contribute to the failure of interventions is4

of great importance. One suggested factor is aneuploidy, in5

which cells are characterized by an imbalanced karyotype and6

alterations in the number of chromosomes (Schukken and Foijer7

2018). Aneuploidy is caused by chromosomal instability and8

missegregation of chromosomes during mitosis. Changes in the9

number of chromosomes and chromosome arm copies allow10

cancer cells to survive under stressful conditions such as drug11

therapy (Lukow et al. 2021; Rutledge et al. 2016; Ippolito et al.12

2021). Indeed, cancer cells are often aneuploid, and aneuploidy13

is associated with poor patient outcomes (Ben-David and Amon14

2020; Smith and Sheltzer 2018).15

Ippolito et al. (2021) induced aneuploidy in cancer cell lines16

by exposing them to reversine, a small-molecule inhibitor of17

the mitotic kinase Mpsi1, and then to anti-cancer drugs such18

as vemurafenib. Reversine-treated cells had a higher prolifera-19

tion rate following drug exposure compared to sensitive cancer20

cells, due to selection of specific beneficial karyotypes. Simi-21

larly, Lukow et al. (2021) induced aneuploidy in cancer cells22

and observed that such cells have an advantage compared to23

sensitive cells during drug treatment despite having lower fit-24

ness before the onset of treatment. One proposed mechanism25

through which aneuploidy can confer resistance to anti-cancer26

drugs is by extending the length of the cell cycle, which prevents 27

the drugs from damaging DNA and microtubules (Replogle 28

et al. 2020). Other mechanisms include altering the expression 29

of drug-metabolizing genes (Ippolito et al. 2021) and enhancing 30

DNA repair due to chronically elevated baseline levels of DNA 31

damage in aneuploid cells (Zerbib et al. 2023). 32

An essential aspect of aneuploidy is that the rate with which 33

cells become aneuploid, that is, the rate of chromosome misseg- 34

regation, is several orders of magnitude higher than the muta- 35

tion rate (Bakker et al. 2023). A cell exposed to stress, such as 36

chemotherapeutic drugs, can acquire aneuploidy faster than a 37

mutation. Some proposed anti-cancer drugs elevate the misseg- 38

regation rate to fight cancer cells (Lee et al. 2016), as an extremely 39

high chromosome missegregation rate is incompatible with cell 40

survival and proliferation. 41

Evolutionary rescue. Populations adapted to a specific environ- 42

ment are vulnerable to environmental changes, which might 43

cause the population’s extinction. Examples of such environ- 44

mental changes include climate change, invasive species, and 45

the onset of drug therapies. Adaptation is a race against time as 46

the population size decreases in the new environment (Tanaka 47

and Wahl 2022). Evolutionary rescue is the process by which the 48

population acquires an adaptation that increases fitness in the 49

new environment such that extinction is averted. There are three 50

potential ways for a population to survive environmental change 51

(Alexander et al. 2014; Bell 2017): migration to a new habitat sim- 52
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ilar to the one before the onset of environmental change (Harsch1

et al. 2014; Cobbold and Stana 2020; Zhou 2022); adaptation by2

phenotypic plasticity without genetic modification (Carja and3

Plotkin 2019, 2017; Levien et al. 2021; Gunnarsson et al. 2020);4

and adaptation through genetic modifications like mutation5

(Gomulkiewicz and Holt 1995; Uecker et al. 2014; Uecker and6

Hermisson 2016, 2011; Orr and Unckless 2014). Here, we focus7

on the latter.8

There has been extensive theoretical analysis of evolutionary9

rescue. Orr and Unckless (2008, 2014) thoroughly investigated10

the simplest case in which there is a specific single mutation11

or low-frequency variant that is sufficient to rescue the popu-12

lation. Martin et al. (2013) extended these results to consider13

the effects of a range of rescue genotypes that can vary in both14

growth rate and variance in offspring number. Importantly for15

the present work, they also argued that two-step processes in-16

volving a “transient” intermediate genotype with growth rate17

close to zero may be an important form of rescue; however, they18

only calculated that the rate of such rescues should scale with the19

total number of such transient genotypes produced. Osmond20

et al. (2020) derived approximate expressions for the rate of these21

two-step rescues, allowing for a range of mutations, and found22

that for some parameter values two-step rescue is more likely23

than rescue by a single step.24

Resistance to cancer therapy is a natural application of evolu-25

tionary rescue theory (Alexander et al. 2014). Iwasa et al. (2003)26

used multi-type branching process theory to approximate the27

probability that a population under strong selective pressure can28

survive extinction, focusing on the case in which the cancer must29

get two specific mutations to be rescued, with the single-mutant30

still dying rapidly. Iwasa et al. (2004) used a similar approach31

to find simple approximate expressions for the probability that32

a single lineage would evolve to survive via a wide range of33

possible mutational pathways. These results are essentially the34

same as those described later in the general context by Osmond35

et al. (2020) for the probability of evolutionary rescue by multiple36

mutations, which we mentioned in the previous paragraph. A37

similar set of models describe adaptation to new environments38

(e.g., a pathogen evolving to cross a species barrier) and fitness39

valley crossing (Antia et al. 2003; Weissman et al. 2009). Gun-40

narsson et al. (2020) analyzed a model where a tumor consisting41

of two populations of cancer cells, one drug resistant and the42

other drug sensitive, can evade extinction by cells switching be-43

tween the two phenotypes through epigenetic mutations. They44

found that even when drug-resistant cells are barely viable, the45

epimutations guarantee evolutionary rescue.46

Here, we study evolutionary rescue after a sudden environ-47

mental change caused by initiating anti-cancer drug treatment.48

We consider a range of effects of aneuploidy, from tolerance to49

(partial) resistance to the drug (Brauner et al. 2016). Note that we50

use “tolerance” to refer to aneuploids that have negative growth51

rates, which is different from other references in the literature52

such as Berman and Krysan (2020). We estimate the effect of ane-53

uploidy on the tumor’s evolutionary rescue probability. When54

aneuploidy provides drug resistance, it can directly rescue the tu-55

mor. However, when aneuploidy provides tolerance to the drug,56

it may act as an evolutionary “stepping stone” or “springboard”57

(Yona et al. 2015; Martin et al. 2013; Osmond et al. 2020), delaying58

extinction and thereby allowing the tumor more time to acquire59

a resistance mutation on top of the aneuploid background. As60

mentioned above, evidence suggests that aneuploidy may be a61

common strategy for tumor adaptation to drug therapy. Still,62
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Figure 1 Model illustration. a) A population of cancer cells
is composed of drug-sensitive, aneuploid, and mutant cells,
which divide with rates λs, λa, and λm and die at rates µs, µa,
and µm, respectively. Sensitive cells can divide and become
aneuploid at rate uλs. Both aneuploid and sensitive cells can
divide and acquire a mutation with rates vλa and vλs, respec-
tively. Color denotes the relative growth rates of the three
genotypes such that λs − µs < λa − µa < λm − µm. b) Sen-
sitive cells are sensitive to the drug, while mutant cells are
drug-resistant. The aneuploid may be tolerant, stationary, or
partially resistant.

it is unknown how often aneuploidy provides tolerance and 63

acts as a stepping stone. We also estimate the mean time until a 64

tumor cell population reaches its pre-treatment size following 65

drug therapy. Given that aneuploidy is present in many tu- 66

mors before the onset of therapy (Lukow et al. 2021; Ben-David 67

and Amon 2020), we also consider the effect of pre-treatment 68

standing genetic variation on the evolutionary dynamics. Addi- 69

tionally, we are interested in the timescale of evolutionary rescue 70

and the impact that aneuploidy has on the time necessary for 71

the tumor to overcome drug therapy. 72

We address these questions by combining known results from 73

the evolutionary rescue literature and considering the quantities 74

and parameter values that are relevant for cancer. Because these 75

results are scattered across multiple papers, and because they 76

all follow from simple branching process approximations, we 77

re-derive all results here for our model. While our focus is on 78

the application of evolutionary rescue theory to the evolution 79

of drug resistance in cancer, our model is a general one, and 80

in the general evolutionary rescue context, this work can be 81

seen as a characterization of the circumstances in which two- 82

step processes contribute to rescue even when single-step rescue 83

mutations are available, as in Osmond et al. (2020) and Iwasa 84

et al. (2003, 2004). 85

Materials and methods 86

Evolutionary model. We follow the number of cancer cells with 87

one of three different genotypes at time t: sensitive, st; toler- 88

ant/resistant aneuploid, at; and resistant mutant, mt. These 89

cells divide and die with rates λk and µk (for k = s, a, m). The 90

division and death rate difference is ∆k = λk − µk. We assume 91

the population of cells is under a strong stress, such as drug 92

therapy, and therefore ∆s < 0, whereas the mutant is resistant 93

to the stress, ∆m > 0. We consider a range of possible values for 94

∆a, finding three distinct scenarios: in the first, aneuploid cells 95

are partially resistant, ∆m > ∆a > 0; in the second, aneuploid 96

cells are tolerant, 0 > ∆a > ∆s; in the third, aneuploid cells 97
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Figure 2 Sample trajectories of the genotype frequencies. a) Without aneuploidy (u = 0), evolutionary rescue is possible through
direct mutation, and in most scenarios, the tumor will become extinct due to the drug. b) When aneuploid cells are tolerant (∆a < 0)
evolutionary rescue can occur indirectly, but direct mutation is the most likely path for evolutionary rescue. c) When aneuploid
cells are stationary (∆a ≈ 0), we observe the appearance of mutant lineages even after the sensitive population has gone extinct,
thus showing that stationary aneuploidy increases the probability of evolutionary rescue. d) When aneuploid cells are partially
resistant (∆a > 0), the tumor is rescued by the aneuploid cell population. Each plot shows 10 simulations of the number of sensitive,
aneuploid, and mutant cells (st, at, mt) over time t. Here, λs = 0.1, λm = 0.1, µs = 0.14, µa = 0.09, µm = 0.09, v = 10−7 , N = 107; a)
u = 0; b) λa = 0.065, u = 10−2; c) λa = 0.08999, u = 10−2; d) λa = 0.095, u = 10−2.

are non-growing, stationary, or growing or dying slowly, that1

is, either slightly tolerant or slightly resistant, such that ∆a ≈ 0,2

in a sense that we will make precise below. We define tolerant3

cells as those that survive drug exposure longer than sensitive4

cells, while resistant cells require higher drug concentrations to5

be affected. For details on these distinctions, see Brauner et al.6

(2016).7

We assume that both chromosomal missegregation and mu-8

tations occur during the process of mitosis. Sensitive cells may9

divide and then missegregate to become aneuploids at rate uλs.10

Both aneuploid and sensitive cells may divide and mutate to11

become mutants at rates vλa and vλs, respectively. To model12

standing genetic variation, we assume that before the onset of13

therapy, sensitive cells become aneuploid with rate ũλs (which14

may differ from uλs) and that aneuploidy confers a fitness cost c1

in a drug-free environment, that is, we assume that aneuploid2

cells have an increased death rate compared to sensitive cells in3

a drug-free environment. We assume that c is not too small, so4

that standing variation is generated by a balance between the5

generation of aneuploids and selection against them, without6

the effect of genetic drift.7

See Figure 1 for a schematic representation of the model,8

Figure 2 for sample trajectories of the different genotypes, and9

Table 1 for a summary of model parameters.10

Stochastic simulations. Simulations are performed using the11

Gillespie stochastic simulation algorithm (Gillespie 1976, 1977) im-12

plemented in Python (Van Rossum and Others 2007). The sim-13

ulation monitors the number of cells of each type: sensitive,14

aneuploid, and mutant. Initially, the population starts with only15

sensitive cells, s0 = N, and the other genotypes are initially16

absent.17

The cell population at time t is represented by the triplet
(st, at, mt). The following describes the events that may occur
(right column), the rates at which they occur (middle column),
and the effect these events have on the population (left column,
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see Figure 1):

(+1, 0, 0) : λsst (1− u− v) (birth of sensitive cell) ,

(−1, 0, 0) : µsst (death of sensitive cell) ,

(0, +1, 0) : uλsst (sensitive cell divides

and becomes aneuploid) ,

(0, 0, +1) : vλsst (sensitive cell divides

and becomes mutant) ,

(0, +1, 0) : λaat (1− v) (birth of aneuploid cell) ,

(0,−1, 0) : µaat (death of aneuploid cell) ,

(0, 0, +1) : vλaat (aneuploid cell divides

and becomes mutant) ,

(0, 0, +1) : λmmt (birth of mutant cell) ,

(0, 0,−1) : µmmt (death of mutant cell) .

For the remainder of this paper, we assume that the di-
vision rates of sensitive and aneuploid cells can be written
as λsst (1− u− v) ≈ λsst and λaat (1− v) ≈ λaat because
u, v ≪ 1 (Table 1). Each iteration of the simulation loop starts
by computing the rates ρk of each event k. We then draw the
time until the next event, δ, from an exponential distribution
whose rate parameter is the sum of the rates of all events, such
that δ ∼ Exp(∑j ρj). Then, we randomly determine which event
occurred, where the probability for event k is pk = ρk/ ∑j ρj.
Finally, we update the number of cells of each genotype accord-
ing to the event that occurred and update the time from t to
t + δ. We repeat these iterations until either the population be-
comes extinct (the number of cells of all genotypes is zero) or the
number of mutant cells is high enough so that their extinction
probability is < 0.1%, that is, until

mt >

⌊
3 log 10

log (λm/µm)

⌋
+ 1,

which we obtain by solving 1− (1− pm)mt = 0.999 for mt with18

pm = ∆m/λm as the probability that a single mutant escapes19

stochastic extinction (Appendix A).20

When simulations are slow (e.g., due to large population size)21

with runtimes in the order of days, we use τ-leaping (Gillespie22

2001), where we assume that the change in the number of cells23

of genotype k in a fixed time interval δ is Poisson distributed24

with mean ρkδ. If the number of cells of genotype k becomes25

negative, we change it to zero.26

Parameterization. We parametrize most of our simulations by27

considering melanoma cells and rely on Rew and Wilson (2000)28

and Bozic et al. (2013) for the division and death rates, respec-29

tively. Rew and Wilson (2000) report in vivo measurements of the30

potential doubling times (the waiting time for the number of cells31

in the tumor to double, disregarding cell death) for a large set of32

cancer types. The division rate is obtained as λ = log 2/T ≈ 0.133

per day. We take this to be the division rate for sensitive and34

assume that mutant cells, which are resistant to therapy, have the35

same division rate. Indeed, doubling times for tumors after re-36

lapse is lower than that of primary tumors for a variety of tissues37

(Tezuka et al. 2007; Rodgers et al. 2024) and metastatic melanoma38

has been shown to grow faster than primary melonoma (Carlson39

2003).40

Bozic et al. (2013) report the growth rate ∆s for sensitive41

melanoma cancer cells, from patient data, from which they de-42

duce the death rate 0.11 ≤ µs ≤ 0.17. We use µs = 0.14 per43

day. Additionally, they observed the growth rate of cancer cells44

before treatment to be 0.01, which we use as the growth rate45

of mutant cells, which are resistant to the drug. Thus, we use46

µm = 0.1− 0.01 = 0.09 per day as the death rate for mutant47

cells. 48

The aneuploid death rate µa is set to the mutant death rate, 49

µm = 0.09 per day, assuming aneuploidy increases resistance 50

to the drug, such as cisplatin, by antagonizing cell division (Re- 51

plogle et al. 2020). For the aneuploid growth rate to be intermedi- 52

ate between those of sensitive and mutant cells, ∆s ≪ ∆a ≪ ∆m, 53

we set the aneuploid division rate to be 0.06 ≤ λa ≤ 0.1. In 54

most of our simulations, we use λa = 0.0899 per day, so that 55

aneuploid cells are tolerant and aneuploidy can only act as an 56

evolutionary “stepping stone” for the generation of the resistant 57

mutant that rescues the tumor (note that this mutant will occur 58

on the background of an aneuploid genotype) . 59

We also consider breast cancer cells, relying on Salehi et al. 60

(2021), who studied multiple TNBC PDX clones (triple-negative 61

breast cancer patient-derived xenografts.) We chose three clones 62

for which Salehi et al. (2021) report their relative Wrightian 63

fitness, 1 + s, in the presence of the drug cisplatin: TNBC- 64

SA609 clone A with 1 + s = 1.047, TNBC-SA1035 clone H 65

with 1 + s = 1.02, and TNBC-SA535 clone H with 1 + s = 1.01. 66

The growth rate ∆, or the Malthusian fitness, is the log of the 67

Wrightian fitness (Wu et al. 2013). We therefore have the fol- 68

lowing set of equations: 1.047 = exp (∆SA609 − ∆s), 1.02 = 69

exp (∆SA1035 − ∆s), 1.01 = exp (∆SA535 − ∆s). The growth rate 70

of breast cancer cells in the absence of the drug is 0.0085 per day 71

(Spratt et al. 1996). The doubling time of breast cancer cells in 72

the absence of cellular death is 8.2 days (Rew and Wilson 2000). 73

Thus, the division rate of breast cancer cells in the absence of 74

the drug is log (2)/8.2 = 0.0845 per day, and their death rate 75

is 0.076 per day. Salehi et al. (2021) report relative fitness for 76

the aneuploid clones rather than division and growth rate. We, 77

therefore, use the above estimates from breast cancer cells in 78

the absence of drugs for the fittest clone, TNBC-SA609 clone A, 79

and solve the set of equations assuming that the drug affects 80

death rather than division and that mutant cells have the same 81

division and death rates as the fittest aneuploid cells of TNBC- 82

SA609 clone A. We therefore have λs = λa = λm = 0.0845 83

for all clones, µs = 0.1215, µSA609 = 0.076, µSA1035 = 0.1015, 84

µSA535 = 0.1115, and µm = 0.076. These estimates are approx- 85

imate at best, and we hope that future experimental research 86

could provide accurate estimates of these quantities. 87

The missegregation rate in cancer cells is estimated to be 88

between 2.5× 10−4 − 10−2 per chromosome per cell division 89

(Shi and King 2005; Thompson and Compton 2008). Ippolito 90

et al. (2021) observed that trisomy in Chr 2 and Chr 6 are most 91

likely to confer increased resistance against the anti-cancer drug 92

vemurafenib for A375 cells. We assume each of these trisomies 93

is formed at the most likely rate, and as a result, we use ũ = 94

10−3 per cell division as the chromosome missegregation rate in 95

the drug-free environment. Some drugs are known to increase 96

chromosome instability (Wang et al. 2019; Mason et al. 2017). 97

Specifically, Lee et al. (2016) estimated the effect of different anti- 98

cancer drugs on the missegregation rate and found a 3-50-fold1

increase. We thus assume an anti-cancer drug that causes a2

10-fold increase in the chromosome missegregation rate, which3

gives us u = 10−2 per cell division. We assume the mutation4

rate is 10−7 per gene per cell division (Loeb 2001), and since we5

assume that a single target gene confers resistance to the drug, 6

we use v = 10−7 per cell division. 7
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Name Value Units References

N Initial tumor size 107 − 109 cells Del Monte (2009)

λs Sensitive division rate 0.1 1/days Bozic et al. (2013);
Rew and Wilson
(2000)

µs Sensitive death rate 0.11− 0.17 1/days Bozic et al. (2013)

λa Aneuploid division rate∗ 0.06− 0.1 1/days -

µa Aneuploid death rate∗ 0.09 1/days -

λm Mutant division rate 0.1 1/days Bozic et al. (2013);
Rew and Wilson
(2000)

µm Mutant death rate 0.09 1/days Bozic et al. (2013);
Carlson (2003)

u Missegregation rate 10−2 1/cell division Lee et al. (2016)

v Mutation rate 10−9 − 10−7 1/cell division Bozic et al. (2013);
Loeb (2001)

ũ Missegregation rate in the drug free
environment∗

5× 10−4 − 2× 10−2 1/cell division Shi and King (2005);
Thompson and
Compton (2008)

c Selection coefficient against aneu-
ploidy in the drug free environment

0.07 1/days Lukow et al. (2021)

Table 1 Model parameters: Melanoma. Parameters from Bozic et al. (2013) consider patients with melanoma treated with the anti-
cancer drug vemurfenib, in which resistance is conferred by trisomy in either Chr 2 or Chr 6. We have modified the parameters
from Bozic et al. (2013) such that sensitive and mutant division rates are λs = λm = log (2)/T ≈ 0.1 instead of their value of 0.14,
where T is the doubling time in the absence of cellular death obtained from Rew and Wilson (2000). For a discussion of the different
interpretations of the tumor doubling times see Avanzini and Antal (2019). Parameters marked with ∗ are not obtained from the
literature.

To estimate the fitness cost of aneuploidy, c, we note1

that Lukow et al. (2021) mixed sensitive and aneuploid A3752

melanoma cells at 1 : 1 ratio, cultured them in a drug-free envi-3

ronment, and observed the ratio evolve as a function of time with4

the aneuploid cells declining to 15% after 24 days. Thus, our esti-5

mate for the fitness cost is c = | log (0.15/(1− 0.15)) /24| ≈ 0.076

per day (Chevin 2011). We estimate the fraction of aneuploid can-7

cer cells in the pre-treatment environment using the formula f =8

ũλs/c, which produces an estimate of f = 10−3 × 10−1/0.07,9

that is, 0.14% of pre-treatment cancer cells have the beneficial 10

aneuploidy of interest. 11

Note that when we refer to drug-sensitive cells, we include 12

those cells that have any aneuploidy that does not increase fit- 13

ness in the presence of the drug (Table 1). Additionally, we 14

focus on mutations that confer resistance, neglecting deleterious 15

mutations (which are more common). We assume deleterious 16

mutations and other aneuploidies occur at similar rates across 17

genotypes and therefore neglect their effect on the dynamics. 18

Density-dependent growth. In most of our analysis, we assume
that cells from the initial population divide and die indepen-
dently of each other. However, these cells will compete for
resources. We assume this competition can be ignored because
the drug will cause the cell density to rapidly drop below the
carrying capacity where competition is important. To test this
assumption, we simulate a logistic growth model, with division

and death rates given by

λ′s = λs,

µ′s = µs + λs
s + a + m

K
,

λ′a = λa,

µ′a = µa + λa
s + a + m

K
,

λ′m = λm,

µ′m = µm + λm
s + a + m

K
,

where K is the tumor carrying capacity. The effective carrying 19

capacity in this model is Ke = K∆a/λa ≈ 106 for K = 108, λa = 20

0.0901, µa = 0.09, where we define the effective carrying capacity 21

to be the population size at which the aneuploid division rate is 22

equal to the aneuploid death rate. 23

Results and discussion 24

Evolutionary rescue probability 25

In our model, evolutionary rescue occurs when drug-resistant
cells appear and establish (avoid random extinction) in the
population (mt ≫ 1) before the population becomes extinct
(st = at = mt = 0). Aneuploidy may contribute to evolutionary
rescue by either preventing (when ∆a > 0) or delaying (when
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Name Value Units

λs Sensitive division rate 0.0845 1/days

µs Sensitive death rate 0.1215 1/days

λa Aneuploid division rate 0.0845 1/days

µa Aneuploid death rate 0.076, 0.1015, 0.1115 1/days

λm Mutant division rate 0.0845 1/days

µm Mutant death rate 0.076 1/days

Table 2 Model parameters: Breast cancer. The derivation of these values, described in the methods section, uses fitness estimates
from Salehi et al. (2021). Parameters not listed here remain unchanged from the values provided in table 1.

0 > ∆a > ∆s) the extinction of the population before mutant cells
appear and establish. We assume independence between clonal
lineages starting from an initial population of N sensitive cells
(we check the effect of density-dependent growth on our results
below) and therefore, we use multi-type branching processes to
model the dynamics of the cancer cell population. Multi-type
branching process models the growth and evolution of popula-
tions with distinct types, capturing dynamics like mutation and
selection. In evolutionary rescue, it predicts the probability of
population survival by tracking adaptive mutations that emerge
and spread under environmental stress. Define ps as the prob-
ability that a lineage starting from a single drug-sensitive cell
avoids extinction by acquiring drug resistance. Thus, N∗ = 1/ps
is the threshold tumor size above which evolutionary rescue is
likely (Iwasa et al. 2003), and the rescue probability is given by

prescue = 1− (1− ps)N ≈ 1− e−Nps = 1− e−N/N∗
, (1)

where the approximation (1− ps) ≈ e−ps assumes that ps (but 26

not necessarily Nps) is small. Indeed, when N < 1/ps, then the 27

probability for evolutionary rescue is prescue ≈ Nps, and when 28

N > 1/ps, it is prescue ≈ 1, justifying the definition of N∗ as the1

threshold tumor size for evolutionary rescue.2

We use multi-type branching-process theory to find approxi-
mate expressions eqs. (A5), (A8) and (A12) for ps in three distinct
scenarios (Appendix A). Substituting these into N∗ = 1/ps, we
find approximations for the threshold tumor size, N∗. In these
approximations, an important quantity is T∗ =

√
λm/4vλ2

a∆m,
which is the critical time an aneuploid lineage needs to survive to
produce a resistant mutant that avoids random extinction. First,
if aneuploidy is sufficiently rare (uλaT∗ < 1), or if aneuploidy
is rare (uλa < −∆a) and sensitive to the drug (∆aT∗ < −1),
then it is likely that evolutionary rescue will occur through a
direct resistance mutation in a sensitive cell without aneuploidy
playing a role in the adaptive dynamics, such that

N∗
m ≈

|∆s|
vλs

λm

∆m
, (2)

which is similar to a classical result by Orr and Unckless (2008).3

Here, |∆s|/ (vλs) is the ratio of the rate at which sensitive cells4

decrease in number and the rate at which they are mutating.5

Notably, the aneuploidy parameters (u, λa, µa) do not affect N∗
m.6

Otherwise, aneuploidy is frequent enough (uλa >
max (−∆a, 1/T∗)) to affect the evolution of drug resistance. The
threshold tumor size can be approximated by one of the follow-
ing scenarios, depending on ∆aT∗, which represents the change

in the aneuploid log-population size during the critical time,

N∗
a ≈

|∆s|
uλs

·



|∆a |
vλa

λm
∆m

, ∆aT∗ ≪ −1
(tolerant aneuploids),

2λaT∗, −1 ≪ ∆aT∗ ≪ 1
(stationary aneuploids),

λa
∆a

, ∆aT∗ ≫ 1
(resistant aneuploids).

(3)

This equation is equivalent to eq. A3 of Iwasa et al. (2004) and7

to eq. 8 of Osmond et al. (2020) with the distribution of fitness8

effects set to a delta function; our “tolerant”, “stationary”, and9

“resistant” scenarios correspond to Osmond et al. (2020)’s “suffi-10

ciently subcritical”, “sufficiently critical”, and “sufficiently su-11

percritical”, respectively. These approximations are accurate12

when compared to results of stochastic evolutionary simulations13

(Figures 3 and 4). Our parameterization for triple-negative breast14

cancer clones suggests that TNBC-SA609 clone A is resistant to15

the drug (∆aT∗ > 500), whereas TNBC-SA1035 clone H and16

TNBC-SA535 clone H are tolerant (∆aT∗ < −1000).17

In the first scenario, the treatment effectively kills aneuploid18

cells but not as quickly as it kills sensitive cells. In the second19

scenario, aneuploid cells are sufficiently resistant, and the ex-20

pected size of each aneuploid lineage is roughly one. In both of21

these scenarios, aneuploidy increases the probability of rescue22

by slowing or halting the decrease in the tumor population size,23

allowing more opportunities to produce resistant mutants. In24

the third scenario, aneuploid cells are sufficiently resistant for25

the population to re-grow the tumor without additional resis-26

tance mutations. Notably, in this scenario the mutant parameters27

(v, λm, and ∆m) do not affect N∗
a beyond their effect on T∗. In28

all scenarios, N∗
a is proportional to 1/u such that increasing the29

missegregation rate u will decrease the threshold tumor size30

(Figure 4b). Furthermore, increasing the aneuploid growth rate31

∆a (which appears both in the terms and in the conditions), also32

reduces the threshold tumor size, with a sharp decrease around33

∆a = 0, but the effect is minor when |∆a| is small compared to T∗34

as this would result in the second scenario where dN∗
a /d∆a = 035

(Figure 4a). The tumor threshold size decreases with the muta-36

tion rate in the first and second scenarios: N∗
a is proportional37

to 1/v in the first scenario (tolerant aneuploids) and to
√

1/v in38

the second scenario (stationary aneuploids). Furthermore, the39

growth rate ∆a < 0 that allows tolerant aneuploids to rescue40

the tumor is between −uλa and −1/T∗, which is proportional41

to −
√

v. Thus, increasing the mutation rate v will decrease42

the tumor threshold size N∗
a , making evolutionary rescue more43
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Figure 3 Aneuploidy facilitates the evolutionary rescue of tumors under drug treatment. The probability of evolutionary rescue,
prescue, as a function of the initial tumor size, N (eq. (1)). Dashed vertical lines show the threshold tumor size, N∗

a , above which
the probability is high (eq. (3)). a) Blue dashed line: without aneuploidy (u = 0). Black line: tolerant aneuploidy (u = 10−2, λa =
0.0899). Red line: stationary aneuploidy (u = 10−2, λa = 0.08999). Green line: partially resistant aneuploidy (u = 10−2, λa = 0.095).
Markers and error bars for averages of simulation results with 95% confidence interval (p± 1.96

√
p (1− p) /n where p is the fraction

of simulations in which the tumor has been rescued, and n = 100 is the number of simulations). Parameters: λs = 0.1, λm =
0.1, µs = 0.14, µa = 0.09, µm = 0.09, v = 10−7. b) Comparison for melanoma and breast cancer with parameters from the literature
(Tables 1 and 2). Black line: Melanoma A375. Blue line: Breast cancer TNBC-SA1035 clone H. Red line: Breast cancer TNBC-SA609
clone A. Green line: Breast cancer TNBC-SA535 clone H.

likely.44

Using eqs. (2) and (3), we can find the ratio of threshold tumor
size for rescue via aneuploidy (u is high) or via direct mutation
(u is low),

N∗
a

N∗
m
≈



|∆a |
uλa

, ∆aT∗ ≪ −1
(tolerant aneuploids),

1
u

(
v ∆m

λm

)1/2
, −1 ≪ ∆aT∗ ≪ 1

(stationary aneuploids),

v ∆m
λm

(
u ∆a

λa

)−1
, ∆aT∗ ≫ 1

(resistant aneuploids).

(4)

Imporantly, when this threshold is smaller than 1, aneuploidy45

is expected to play a role in evolutionary rescue, as it reduces46

the threshold tumor size needed for rescue. As expected, this47

ratio increases with the mutation rate v and decreases with48

the aneuploidy rate u. In the first scenario, |∆a|/uλa is the49

ratio of the number of sensitive divisions required to produce 50

an aneuploid, 1/u, to the number of divisions in the result- 51

ing aneuploid lineage before it goes extinct, λa/|∆a|. In the 52

third scenario,
(

v ∆m
λm

)
/
(

u ∆a
λa

)
is the ratio of the rates of ap- 53

pearance of resistant mutants that avoid extinction and partially 54

resistant aneuploids that avoid extinction. In the second sce- 55

nario, 1
u

(
v ∆m

λm

)1/2
=
√

∆a
uλa

v ∆m
λm

(
u ∆a

λa

)−1
, which is the geomet- 56

ric mean of the first and third scenarios. 57

Interestingly, increasing both the aneuploid division rate, λa, 58

and the aneuploid death rate, µa, such that the growth rate ∆a 59

remains constant, leads to a decrease in T∗, pushing the system 60

to the second scenario. This is because increasing λa causes a 61

decrease in T∗ as it increases the effective mutation rate vλa 62

(as mutations mostly occur during division) and a lineage does 63

not have to survive as long in order to generate a successful 64

mutant. In the second scenario, the threshold tumor size N∗
a is 65

unaffected by the division rate λa (i.e., dλaT∗/dλa = 0). Thus, if 66

aneuploid cells rapidly die due to the drug but compensate by 67

rapidly dividing, increasing the division rate will not facilitate 68

adaptation. 69

We can categorize tumors by their size: small tumors with 70

size N < N∗
a that are unlikely to survive treatment, inter- 71

mediate tumors with size N∗
a < N < N∗

m that rely on ane- 72

uploidy for evolutionary rescue, and large tumors with size 73

N > N∗
m that could overcome drug treatment without aneu- 74

ploidy (Figure S3). For the parameter values in Table 1 with 75

λa = 0.0899, µs = 0.14, u = 10−2, v = 10−7, we are in the tol- 76

erant aneuploid scenario, and substituting in eqs. (2) and (3), 77

we have N∗
a ≈ 4× 106 and N∗

m ≈ 4× 107. Hence, we obtain 78

the ratio N∗
a /N∗

m ≈ 0.11 (eq. (4)), that is, aneuploidy reduces 79

the threshold tumor size by approximately 89%. Interestingly, 80

the threshold between small and intermediate tumors, N∗
a , is 81

similar to the tumor detection threshold of 4.19× 106 cells for 82

a wide variety of tumors (Avanzini and Antal 2019). We note 83

that vemurafenib-treated melanomas (i.e., melanomas with sizes 84

above the detection threshold) have a probability > 50% to 85

relapse (Piejko et al. 2023; Handa et al. 2022). 86

Aneuploidy may lead to an increased mutation rate in cancer 87

cells (Garribba et al. 2023; Passerini et al. 2016; Janssen et al. 2011). 88

Thus, we extended our model to account for this in Appendix 89

H. We find that increasing the mutation rate in aneuploid cells 90

by one order of magnitude leads to a decrease in the threshold 91

tumor size of approximately one order of magnitude (Figure 92

S10). Also, it transitions the system from the first scenario (toler- 93

ant aneuploids) to the second scenario (stationary aneuploids) 94
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Figure 4 Aneuploidy reduces tumor threshold size. a) The threshold tumor size N∗
a (eq. (3)) as a function of the aneuploid growth

rate ∆a. The dashed horizontal line shows N∗
m (eq. (2)), the threshold tumor size without aneuploidy (u = 0). When aneuploid

growth rate is close to or higher than zero, aneuploidy decreases the threshold tumor size, facilitating evolutionary rescue. The
inset highlights the scenario when aneuploid cells are stationary. Red dots for simulations and error bars for the 95% confidence
intervals obtained with bootstrap (Appendix G). Parameters: λs = 0.1, λm = 0.1, µs = 0.14, µa = 0.09, µm = 0.09, u = 10−2, v = 10−7.
b) Threshold tumor size N∗

a (eq. (3)) as a function of the ratio of aneuploidy and mutation rates, u/v. Dashed horizontal line shows
N∗

m (eq. (2)), the threshold tumor size without aneuploidy (u = 0). When the aneuploidy rate is much higher than the mutation rate,
aneuploidy decreases the threshold tumor size, facilitating evolutionary rescue. Blue line represents the exact formula for threshold
tumor size N∗

a while the solid black line represents the approximation (eq. (3)). Red dots represent simulation results, and the error
bars represent the 95% confidence intervals obtained with bootstrap (Appendix G). Parameters: λs = 0.1, λa = 0.0899, λm =
0.1, µs = 0.14, µa = 0.09, µm = 0.09, v = 10−7.

without changing the aneuploid growth rate, ∆a. 95

In our analysis, we used branching processes, which assume 96

that growth (division and death) is density-independent. How- 97

ever, growth may be limited by resources (oxygen, nutrients, etc.) 98

and therefore depend on cell density. We performed stochastic 99

simulations of a logistic growth model with a carrying capac- 100

ity. We find that our density-independent approximations agree 101

with the results of simulations with density-dependent growth1

for biologically relevant parameter values (Figure S1).2

Standing vs. de novo genetic variation. We initially assumed that3

at the onset of drug treatment, the tumor consisted entirely of4

drug-sensitive cells. In reality, aneuploidy is likely generated5

even before treatment begins, at some rate ũ, which may be6

lower in the absence of drugs, ũ < u (Wang et al. 2019; Mason7

et al. 2017). Aneuploidy is also thought to carry a fitness cost c8

when drugs are absent (Replogle et al. 2020; Giam and Rancati9

2015). Therefore, if the tumor size N is large–as expected at10

the time of treatment–a fraction of cells, approximately f ≈11

ũλs/c, may already be aneuploid. Here we assume that the12

drug affects the sensitive death rate but not the division rate13

and therefore we use λs for the sensitive division rate in the14

drug-free environment.15

Therefore, the threshold tumor size for rescue by standing
genetic variation, Ñ∗

a , is similar to the threshold for rescue by de
novo variation, N∗

a , except that the sensitive growth rate |∆s| is
replaced by the cost of aneuploidy c, such that

Ñ∗
a

N∗
a

=
u
ũ

c
|∆s|

. (5)

This result has been previously reported by Orr and Unckless16

(2008) and Martin et al. (2013) for one-step evolutionary rescue.17

Comparing this approximation of Ñ∗
a /N∗

a to results of stochastic 18

simulations, we find that the approximations are accurate (Fig- 19

ure 5). Standing genetic variation will drive evolutionary rescue 20

if sensitive cells die rapidly (growth rate ∆s is negative) due 21

to a strong effect of the drug on sensitive cells or if the cost of 22

aneuploidy in the drug-free environment, c, is small. In contrast, 23

de novo aneuploid cells will have a greater contribution to rescue 24

if the cost of aneuploidy, c, is large, the effect of the drug on 25

sensitive cells is weak (∆s is close to zero), or if the drug induces 26

the appearance of aneuploid cells (u > ũ). For example, with 27

λs = 0.1, µs = 0.14, u = 10−2, ũ = 10−3, and c = 0.07, the ratio 28

of the threshold tumor sizes for standing vs. de novo variation 29

is Ñ∗
a /N∗

a ≈ 17.5, which means that de novo genetic variation is 30

the main driver of evolutionary rescue. 31

Using eqs. (2), (3) and (5), we can find the ratio of thresh-
old tumor size for rescue via standing genetic variation to the
threshold for rescue via mutation,

Ñ∗
a

N∗
m

=
Ñ∗

a
N∗

a

N∗
a

N∗
m

≈ c
|∆s|



|∆a |
ũλa

, ∆aT∗ ≪ −1
(tolerant aneuploids),

1
ũ

(
v ∆m

λm

)1/2
, −1 ≪ ∆aT∗ ≪ 1

(stationary aneuploids),

v ∆m
λm

(
ũ ∆a

λa

)−1
, ∆aT∗ ≫ 1

(resistant aneuploids).

(6)

Evolutionary rescue through direct mutation is more likely if the 32

cost of aneuploidy, c, is large or the effect of the drug, ∆s, is small. 33

In contrast, standing genetic variation will drive adaptation if the 34

pre-treatment chromosome missegregation rate, ũ, is large. The 35

ratio does not depend on the rate of chromosome missegregation 36
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Figure 5 Standing genetic variation facilitates the evolutionary rescue of tumors under drug treatment. a) Ratio of threshold
tumor sizes for rescue by standing genetic variation and by de novo variation, Ñ∗

a /N∗
a , when a fraction ũλs

c is aneuploid at the start
of treatment, as a function of the sensitive growth rate ∆s. Standing genetic variation will drive drug resistance when the sensitive
cell population is rapidly declining (∆s ≪ 0) due to a stronger effect of the drug on sensitive cells. Red dots represent simulation
results, and the error bars represent the 95% confidence intervals obtained with bootstrap (Appendix G). Parameters: λs = 0.1, λa =
0.0899, λm = 0.1, µa = 0.09, µm = 0.09, ũ = 10−3, u = 10−2, v = 10−7. b) Ratio of threshold tumor size Ñ∗

a (when a fraction ũλs
c is

aneuploid at the start of treatment) and N∗
a as a function of the ratio of aneuploidy rates ũ/u. De novo aneuploids will have a larger

contribution to the appearance of drug resistance if the drug induces the appearance of aneuploid cells (u ≫ ũ). Red dots represent
simulation results, and the error bars represent the 95% confidence intervals obtained with bootstrap (Appendix G). Parameters:
λs = 0.1, λa = 0.0899, λm = 0.1, µs = 0.14, µa = 0.09, µm = 0.09, ũ = 10−3, v = 10−7.

induced by the drug, u. However, if the aneuploid growth rate, 37

∆a, increases, evolutionary rescue is driven by standing genetic 38

variation. For the parameter values of λs = 0.1, λa = 0.0899, 39

λm = 0.1, µs = 0.14, µa = 0.09, µm = 0.09, ũ = 10−3, and 40

v = 10−7, we are in the first scenario (tolerant aneuploids) and 41

obtain the ratio Ñ∗
a /N∗

m ≈ 1.94, which means that standing 42

genetic variation does not drive evolution of drug resistance 43

when compared to direct mutation. We note that for larger1

values of the pre-treatment chromosome missegregation rate, ũ,2

which are consistent with empirical studies (Table 1), standing3

genetic variation can drive adaptation when compared to direct4

mutation.5

Recurrence time due to evolutionary rescue6

When evolutionary rescue occurs, the time until the tumor re-7

curs may still be long. We therefore explored the time until8

the tumor recurs, that is, the time until the tumor reaches its9

original size, N. When the expected number of resistant lin-10

eages that avoid extinction is small, the expected recurrence11

time can be estimated by adding two terms: the mean evolution-12

ary rescue time, which is the waiting time for the appearance of13

a resistant lineage that avoids extinction (conditioned on such14

an event occurring in the first place), and the mean proliferation15

time, which is the expected time for that lineage to grow to N16

cells. However, when the expected number of resistant lineages17

is large, the mean recurrence time cannot be separated into the18

mean evolutionary rescue time and mean proliferation time be-19

cause multiple mutant lineages contribute towards the mutant20

population size reaching the initial tumor size. In this case the21

dynamics of the number of mutant cells is deterministic and can22

therefore be modeled by a system of ordinary differential equa-23

tions (ODE), which describe how the number of mutant cells24

changes over time by its time derivative (eq. D2). Of particular25

interest is the distribution of the evolutionary rescue time and26

recurrence time with tolerant aneuploid cells (∆aT∗ ≪ 1) as it27

represents the two-step evolutionary rescue scenario. We focus28

on the parameter values in Table 1 with λa = 0.0899 (tolerant29

aneuploids), µs = 0.14 (intermediate sensitive death rate), and 30

v = 10−7 (high end of the mutation rate). 31

Evolutionary rescue time. We have derived approximations for
τm, the mean evolutionary rescue time without aneuploidy (u =
0), and τa, the mean rescue time with aneuploidy (u > 0), both
conditioned on evolutionary rescue occurring (Appendix C).
These approximations agree with simulation results for small,
intermediate, and large tumor sizes (Figures S2 and S6). The
mean rescue time with aneuploidy for small and large tumors
follows

τa ≈
{
− 1

∆s
− 1

∆a
, N ≪ N∗

a ,
1

vλs N
λm
∆m

, N ≫ N∗
m.

(7)

For small tumors (N ≪ N∗
a ), the mean rescue time is the two- 32

step equivalent of the one-step result from Orr and Unckless 33

(2014, expectation of eq. 18). The mean rescue time (conditioned 34

on rescue occuring) is an increasing function of the sensitive 35

and aneuploid growth rates and independent of the other model 36

parameters, including tumor size (blue line in Figure S6). This is 37

because if the population rapidly declines but is then rescued, 38

than the resistance mutation must have appeared early; if the 39

population slowly declines, than mutations can appear later and 40

the mean time will be longer. In our focus parameter regime, we 41

have ∆s = −0.04 and ∆a = −10−4, such that the mean rescue 42

time is mainly determined by the aneuploid growth rate, and 43

τa ≈ 104 days (eq. (7)). 44

For large tumors (N ≫ N∗
m), the dynamics are equivalent to 45

a scenario where rescue mutations appear at a constant rate, and 46

the mean rescue time is independent of the aneuploid parame- 47

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyaf098/8140956 by guest on 23 M

ay 2025



10 GENETICS Journal Template on Overleaf

1 10 10
0

10
00

10
00

0

Time, t (days)

0

0.5

1
Pr

ob
ai

bi
lit

y 
th

at
 a

 re
sc

ue
 li

ne
ag

e
 h

as
 n

ot
 a

pp
ea

re
d 

by
 ti

m
e 

t
1

P(
re

sc
ue

,t
)

no aneuploidy
tolerant
stationary
partially resistant

101 103 105
Time,  t (days)

0

0.25

0.5

0.75

1

Pr
ob

ab
ilit

y 
th

at
 m

ut
an

t p
op

ul
at

io
n

 h
as

 n
ot

 re
ac

he
d 

siz
e 

N
 a

t t
im

e 
t

P(
m

t
N

)

N = 106

N = 107

N = 1010

(a) (b)

Figure 6 Aneuploidy extends the window of opportunity for evolutionary rescue of tumors under drug treatment. a) The proba-
bility that a successful mutant has not appeared by time t. Black line: tolerant aneuploidy (u > 0, λa = 0.0899). Red line: stationary
aneuploidy (u > 0, λa = 0.089999). Green line: partially resistant aneuploidy (u > 0, λa = 0.095). Blue line: no aneuploidy
(u = 0). Aneuploidy plays an important role in rescuing the tumor cell population as the sensitive population becomes extinct.
Markers represent simulation results, and the error bars represent 95% confidence interval (p± 1.96

√
p (1− p) /n where p is the

fraction of simulations in which a successful mutant has not been generated, and n = 100 is the number of simulations). Param-
eters: λs = 0.1, λm = 0.1, µs = 0.14, µa = 0.09, µm = 0.09, u = 10−2, v = 10−7, N = 107. b) Probability that a mutant cancer
cell population has not reached size N at time t when aneuploidy provides tolerance. Green line: N = 106 (small tumor). Red line:
N = 107 (intermediate-sized tumor). Blue line: N = 1010 (large tumor). Increasing the initial tumor size guarantees that the cancer
will relapse. Markers represent simulations, and the error bars represent 95% confidence interval (p± 1.96

√
p (1− p) /n where p is

the fraction of the simulations in which the mutant population size has not reached N and n = 100 is the number of simulations).
Parameters: λs = 0.1, λa = 0.0899, λm = 0.1, µs = 0.14, µa = 0.09, µm = 0.09, u = 10−2, v = 10−7.

ters (u, λa, and ∆a). Increasing the per division mutation rate, v, 48

leads to the faster appearance of a rescue mutations and hence 49

reduced mean rescue time. Increasing the tumor size leads to 50

shorter mean rescue time, as more sensitive cells can mutate to 51

become resistant. 52

Given that a fraction f ≈ 0.14% of the initial cancer cell 53

population is expected to have beneficial aneuploidy even before 54

the onset of drug treatment, we want to know whether the mean1

evolutionary rescue time is affected by the standing genetic2

variation. We calculated the mean evolutionary rescue time with3

standing genetic variation, τ̃a (eq. (C10)), and compared our4

result with simulations (Figure S9). We find that standing genetic5

variation does not significantly affect the mean evolutionary6

rescue time.7

We calculate the probability that a rescue mutation has been8

generated by time t in Appendix E. This allows us to examine9

whether aneuploidy promotes or delays evolutionary rescue.10

We find that aneuploidy promotes evolutionary rescue after11

1/∆s ≈ 100 days, at a time when no more rescue mutations are12

generated through mutations in sensitive cells (Figure 6a). Thus,13

aneuploidy increases the window of opportunity for evolutionary14

rescue. This can have a counter-intuitive outcome: conditioned15

on the rescue of the tumor, tumors rescued by aneuploid cells16

may acquire rescue mutations later than those rescued by sensi-17

tive cells.18

Recurrence time. We next approximated the mean time for
the population of mutant cancer cells to reach the initial, pre-
treatment population size N, which we denote the recurrence

time τr
a (eqs. (7), (D1) and (D4)),

τr
a ≈

{
− 1

∆s
− 1

∆a
+ log pm N

∆m
, N ≪ N∗

a ,
1

∆m
log ∆m−∆s

vλs
, N ≫ N∗

m,
(8)

where pm is the probability that a lineage starting from a single19

mutant cell escapes stochastic extinction.20

Figure 7 and S7 show the agreement between our approx-21

imations and simulation results. For small tumors (N ≪ N∗
a ),22

the mean recurrence time can be approximated as the sum of23

the mean time for the first rescue mutation to appear (τa) and24

the additional mean time for its lineage to reach size N. This25

additional time is the equivalent of Orr and Unckless (2014)’s26

“treturn” (their eq. 23). It grows logarithmically with tumor size27

N and may be the same order of magnitude as the mean evo-28

lutionary rescue time. Increasing the mutant growth rate, ∆m,29

decreases the recurrence time, while increasing the sensitive and30

aneuploid growth rates, ∆s and ∆a, respectively, increases the31

recurrence time. 32

For large tumors (N ≫ N∗
m), the dynamics of the number of 33

mutant cells is deterministic, and the mean recurrence time be- 34

comes independent of the initial tumor size N. Increasing either 35

the mutant growth rate, ∆m, or the mutation rate, v, decreases 36

the time for the tumor to rebound to its initial size. Drugs that 37

significantly increase the death rate of sensitive cells, µs, but 38

do not affect their division rate, λs, delay cancer recurrence. 39

Drugs that decrease the sensitive division rate delay cancer re- 40

currence time even more, because they effectively decrease the 41

mutation rate (assuming mutations occur during division). Pa- 42

tients treated with such drugs may require a longer period of 43

monitoring to guarantee the effectiveness of the treatment. 44
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Figure 7 Tumor size decreases the mean recurrence time.
The mean time for the mutant cell population to reach size
N, the initial number of cancer cells. Our inhomogeneous
Poisson-process approximation (solid black line, eq. (D1)) is
in agreement with simulation results (red markers with error
bars for 95% CI) for intermediate size N. Simulation results
converge to eq. (D4) (blue dashed line) for large values of N.
The green line represents the numerical solution of eq. (D3).
Parameters: λs = 0.1, λa = 0.0899, λm = 0.1, µs = 0.14, µa =
0.09, µm = 0.09, u = 10−2, v = 10−7.

We note that, for small and large tumors, when N ≪ N∗
a or 45

N ≫ N∗
m, the asymptotic expressions for the mean recurrence 46

time are independent of the chromosome missegregation rate 47

u, and therefore, the rate at which the drug induces aneuploidy 48

has no effect on the time for the tumor to rebound to its initial 49

size N. 50

Appendix F gives us the probability that a mutant cancer cell 51

population has not reached size N by time t. Figure 6b shows 52

agreement between our approximations and simulation results 53

for various values of N. Additionally, we derive the distribution 54

of the recurrence time for a small tumor with N = 106 cells, 55

noting that the distribution is wide and right-skewed (Figure 56

S4). It is highly unlikely to observe the recurrence of cancer at 57

times smaller than 1
∆m

log ∆m−∆s
vλs

≈ 1500 days for the parameter 58

values in Table 1 with λa = 0.0899, µs = 0.14, and v = 10−7 and 59

independent of initial tumor size N (Figure 6b). 60

The detection time τM
a is defined as the time for the tumor 61

size to reach detection threshold M. We derive the mean detec-1

tion time for M = 107 in Appendix D. We find that for small2

and intermediate-sized tumors the mean detection time is ap-3

proximately equal to the mean recurrence time (i.e., τr
a ≈ τM

a4

for N < N∗
m). For large tumors the mean detection time τM

a de-5

creases logarithmically with tumor size N, while the recurrence6

time τr
a is constant (Figure S8). For large tumors we also have7

M < N∗
m < N, so the mean detection time is shorter compared8

to the mean recurrence time, that is, the resistant tumor may be9

detected before recovering back to its initial size.10

Discussion11

We have modeled a tumor—a population of cancer cells—12

exposed to drug treatment that causes it to decline in size toward13

potential extinction. In this scenario, the tumor can be “evolu-14

tionarily rescued” or escape extinction via two paths. In the15

direct path, a drug-sensitive cell acquires a mutation or aneu-16

ploidy that confers resistance and allows it to grow rapidly. In17

the indirect path, a sensitive cell first becomes aneuploid, which18

diminishes the drug’s effect, and then an aneuploid cell acquires19

a mutation that confers resistance (Figure 1).20

Using multi-type branching processes, we derived the prob-21

ability of evolutionary rescue of the tumor under the effects of22

aneuploidy, ranging from tolerance to partial resistance. We ob-23

tained exact and approximate expressions for the probability of24

evolutionary rescue (eq. (1)). Our results show that the probabil-25

ity of evolutionary rescue increases with the initial tumor size N,26

the drug-sensitive growth rate ∆s, the mutation rate v, and the27

aneuploidy rate u. Notably, the latter indicates that aneuploidy,28

even when it only provides tolerance, increases the probability29

that the tumor will be rescued, as long as it occurs frequently30

enough (Figure 3a, eq. (4)).31

When aneuploid cells are partially resistant to the drug32

(∆s ≪ 0 ≪ ∆a ≪ ∆m), aneuploidy itself rescues the popula-33

tion (Figure 4a). When aneuploidy only provides tolerance to34

the drug (∆s ≪ ∆a ≪ 0 ≪ ∆m), it cannot rescue the population. 35

Instead, if the rate of occurrence of aneuploidy is high enough 36

(eq. (4)) then aneuploidy may act as a “stepping stone” through 37

which the resistant mutant can appear more easily, given that 38

the number of aneuploid cells declines slower than the number 39

of drug-sensitive cells (Figure 2). In this scenario, aneuploidy 40

provides two advantages. First, it delays the extinction of the 41

population, providing more time for the appearance of a resis- 42

tance mutation. Second, it increases the population size relative 43

to a drug-sensitive population, providing more cells in which 44

mutations can occur. Together, this increases the cumulative 45

number of mutants that arise (i.e., Nuvλsλa/|∆s∆a|). 46

We find that aneuploidy can significantly affect evolutionary 47

rescue by reducing the threshold tumor size by several orders 48

of magnitude, even when aneuploidy only provides tolerance, 49

provided that the aneuploidy rate is high enough, λau > |∆a| 50

(Figure 3a, eq. (4)). When the number of cells in the tumor is 51

large enough (i.e., N ≫ N∗
m ≈ 4× 107), a resistance mutation 52

will occur in drug-sensitive cells before these cells become ex- 53

tinct. Therefore, large tumors are likely to be rescued with or 54

without aneuploidy. Anti-cancer drugs are often used as adju- 55

vant therapy after resection, in which case the number of cells in 56

the tumor may be below the detection threshold of ∼ 107 (Bozic 57

et al. 2013). In these cases, aneuploidy can have a crucial role in 58

the evolutionary rescue of the tumor and, therefore, in cancer 59

recurrence. Indeed, secondary tumors are estimated to cause 60

the majority of cancer-related deaths (Chaffer and Weinberg 61

2011). The importance of aneuploidy in the evolutionary rescue 62

of secondary tumors is reinforced by the fact that metastases 63

have been shown to have a chromosome missegregation rate 64

two to three orders of magnitude higher compared to primary 65

tumors (Kimmel et al. 2023). 66

As an example, we have parameterized our model using es- 67

timates from three triple-negative breast cancer (TNBC) clones 68

under drug therapy. We find that TNBC clones are either in 69

the first scenario, in which aneuploidy provides a partial or 70

full resistance to the drug, or the third scenario, in which ane- 71

uploidy provides tolerance to the drug. It remains to be seen 72

which tumor type and drug combinations produce stationary 73

aneuploidies. Comparing the probability of evolutionary rescue 74

between different tumors (Figure 3b) suggests that some TNBC 75

clones have a much higher probability of relapsing compared to 76

melanoma and other TNBC clones. Notably, the probability of 77
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relapse in TNBC patients is higher than 50% in the first 3-5 years 78

after diagnosis (Taushanova et al. 2023), whereas in melanoma 79

patients it is approximately 10-20% in the first 5 years (Wan et al. 80

2022; Von Schuckmann et al. 2019). 81

Given that the mean time for secondary tumors to adapt to 82

anti-cancer drugs can be of the order of 1,000 days (Figure S2a), 83

aneuploidy can explain the reappearance of cancer even after 84

initial remission. The theoretical prediction for the mean rescue 85

time of tumors smaller than 108 cells is greater than 4 years, 86

consistent with previous estimates of the recurrence time of 87

tumors after resection (Avanzini and Antal 2019). We found that 88

aneuploidy complements evolutionary rescue through direct 89

mutation because it produces rescue mutations mostly after the 90

number of sensitive cells has decreased to a point where a direct 91

mutation is no longer a feasible option for evolutionary rescue 92

(Figure 6a). 93

We hypothesized that standing genetic variation (the exis- 94

tence of aneuploid cancer cells in the tumor before the onset of 95

therapy) could facilitate evolutionary rescue by reducing the 96

waiting time for the appearance of aneuploid cells. We found1

that a drug that reduces the sensitive growth rate and does not2

significantly increase the chromosome missegregation rate will3

likely lead to evolutionary rescue through standing genetic vari-4

ation (Figure 5 and eq. (5)). If the fraction of tumor cells that5

have the beneficial aneuploidy is f ≫ uλs/|∆s| ≈ 2.5%, then6

evolutionary rescue is more likely to occur via standing varia-7

tion rather than through de novo aneuploidy (Figure S5). For the8

parameter values we focus on in our examples (Table 1), this9

fraction is an order of magnitude lower, and therefore, we expect10

evolutionary rescue to occur primarily by de novo aneuploidy.11

Similar to Osmond et al. (2020), we find that two-step rescues12

can be more likely than simple one-step rescues, because the13

mutation rate to stepping-stone (aneuploid) genotypes can be14

much higher than that to fully resistant genotypes. The “sta-15

tionary” scenario, in which the aneuploid growth rate is close16

to zero in the presence of the drug, is particularly interesting.17

Although this may seem like a small region of parameter space18

in a general model of evolutionary rescue (Figure 4a, inset), it19

could be biologically significant for some tumors under specific20

drug therapies. Our results suggest that identifying aneuploi-21

dies that are tolerant or stationary may be worthwhile, as they22

may enhance the probability of rescue (Figure 3a) and extend23

the window of opportunity for rescue (Figure 6).24

Experiments could test our model predictions. For example,25

to assess the effect of initial tumor size on the probability of26

evolutionary rescue, a large culture mass can be propagated27

from a single cancer cell in permissive conditions and then di-28

luted to a range of starting tumor sizes. Then, the extinction29

or survival of these tumors can be monitored during exposure30

to anti-cancer drugs that induce aneuploidy or to saline solu-31

tion for control (Ippolito et al. 2021). We can then compare the32

results of these experiments to predictions of our model to see33

if tumors with initial size below the threshold eq. (3) are more34

likely to become extinct due to drug exposure. It may also be35

interesting to look for the involvement of aneuploidy in evolu-36

tionary rescue in other biological systems, such as evolution of37

yeast populations under different stress conditions (Pompei and38

Cosentino Lagomarsino 2023; Kohanovski et al. 2024).39

Our model neglects the possibility of back-mutations from40

aneuploidy to euploidy, and also the possibility that the fitness41

of a euploid cell with a resistance mutation may be higher than42

that of an aneuploid cell with the same mutation. Both of these43

would be expected to reduce the importance of two-step rescues44

via aneuploidy. But for the former, unless the rate of loss of45

extra chromosomes is extremely high (for estimates in yeast, see46

Hose et al. (2024)), comparable in magnitude to the growth rate47

∆a, we expect that its effect on the dynamics will be negligible.48

The latter possibility, in which aneuploidy substantially reduces49

the mutant growth rate, seems more likely to have an effect.50

Including it would be a straightforward extension to our model.51

In this case, it could actually be more important to consider the52

possibility of the loss of aneuploidy, as one would need to check53

the relative rates of the simple sensitive → euploid mutant path54

and the three-step sensitive → aneuploid → aneuploid mutant →55

euploid mutant path (Kohanovski et al. 2024). 56

We have assumed that cancer cell lineages are independent 57

and have verified that this is accurate under simple logistic 58

growth. This assumption neglects the potential effects of spa- 59

tial structure and local interactions, which may be important in 60

solid tumors. Such tumors can be spatially heterogeneous, with 61

different genotypes inhabiting cellular niches and immune infil- 62

tration impacting growth in affected regions (Varrone et al. 2023; 63

Galon et al. 2010). This can potentially impact the probability of 64

evolutionary rescue (Martens et al. 2011). 65

Conclusions. Our results quantitatively suggest that aneu- 66

ploidy can play an important role in tumor adaptation to anti- 67

cancer drugs when the tumor size is small or intermediate. Large 68

tumors are predicted to adapt to anti-cancer drugs through direct 69

mutation. In contrast, smaller tumors are predicted to become 70

resistant directly by aneuploidy or by a resistance mutation that 71

occurs in aneuploid cells that serve as evolutionary “stepping 72

stones”. Thus, therapies that increase the rate of aneuploidy in 73

tumors to combat cancer may also promote drug resistance. 74
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Appendix A: Survival probability of a single lineage 26

To analyze evolutionary rescue in our model, we use the frame- 27

work of multi-type branching processes (Harris 1963; Weissman1

et al. 2009). In the case of cancer, where all reproduction is binary2

fission, these branching processes are also birth-death processes3

(Kendall 1948). This allows us to find explicit expressions for4

the survival probability: the probability that a lineage descended5

from a single cell does not become extinct.6

Let ps, pa, and pm be the survival probabilities of a population
consisting initially of single sensitive cell, aneuploid cell, or
mutant cell, respectively. The complements 1− ps, 1− pa, and
1 − pm are the extinction probabilities, which satisfy each its
respective equation (Harris 1963),

1− ps =
µs

λs + µs + uλs + vλs

+
uλs

λs + µs + uλs + vλs
(1− pa) (1− ps)

+
λs

λs + µs + uλs + vλs
(1− ps)2

+
vλs

λs + µs + uλs + vλs
(1− pm) (1− ps) ,

1− pa =
µa

λa + µa + vλa
+

vλa

λa + µa + vλa
(1− pm) (1− pa)

+
λa

λa + µa + vλa
(1− pa)2 ,

1− pm =
µm

λm + µm
+

λm

λm + µm
(1− pm)2 .

(A1)
The survival probabilities are given by the smallest solution

for each quadratic equation (Uecker et al. 2015). Therefore we
have

ps =
λs − µs − uλs pa − vλs pm

2λs

+

√
(λs − µs − uλs pa − vλs pm)2 + 4λ2

s (upa + vpm)
2λs

,

pa =
λa − µa − vλa pm +

√
(λa − µa − vλa pm)2 + 4λ2

avpm

2λa
,

pm =
λm − µm

λm
.

(A2)
Note that the equation for ps depends on both pa and pm, and7

the equation for pa depends on pm. To proceed, we can plug the 8

solution for pm and pa into the solution for ps. We perform this 9

for three different scenarios. 10

Scenario 1: Aneuploid cells are partially resistant We first
assume that aneuploidy provides partial resistance to drug
therapy, λa > µa, and that this resistance is significant,

(λa − µa − vλa pm)2 > 4λ2
avpm. We thus rewrite eq. (A2) as

ps =
λs − µs − uλs pa − vλs pm

2λs

×
(

1−
√

1 +
4λ2

s (vpm + upa)
(λs − µs − uλs pa − vλs pm)2

)
, and

pa =
λa − µa − vλa pm

2λa

(
1 +

√
1 +

4λ2
avpm

(λa − µa − vλa pm)2

)
.

Using the Taylor expansion
√

1 + x = 1 + x/2 + O(x2) and
assuming u, v ≪ 1, we obtain the following approximation for
the survival probability of a population initially consisting of a
single sensitive cell,

ps ≈ − vλs pm + uλs pa

λs − µs − uλs pa − vλs pm
(A3)

≈ − 1
λs − µs

[
uλs (λa − µa)

λa
+

uvλsλa (λm − µm)
λm (λa − µa)

+
vλs (λm − µm)

λm

]
. (A4)

Now uv is small, and if we use the fact that v ≪ u, we have:

ps ≈
uλs

|∆s|
∆a

λa
. (A5)

However, if aneuploidy is sufficiently rare such that

uλs∆a

λa
<

vλs∆m

λm
⇒ uλa <

vλ2
a∆m

λm

1
∆a

<
vλ2

a∆m

λm

1√
4λ2

avpm

⇒ uλa < T∗,

where T∗ = (4vλ2
a∆m/λm)−1/2 and in the second inequality we

used the fact that ∆2
a > 4λ2

avpm. In this scenario adaptation is
through direct mutation and:

ps ≈
vλs

|∆s|
∆m

λm
.

Scenario 2: Aneuploid cells are tolerant. We now assume that
aneuploidy provides tolerance to drug therapy, that is, the num-
ber of aneuploid cells significantly declines over time, but at
a lower rate than the number of sensitive cells, λs − µs <
λa − µa < 0. We also assume that the decline is significant,
(λa − µa − vλa pm)2 > 4λ2

avpm. We rewrite eq. (A2) as

ps =
λs − µs − uλs pa − vλs pm

2λs

×
(

1−
√

1 +
4λ2

s (vpm + upa)
(λs − µs − uλs pa − vλs pm)2

)
,

pa =
λa − µa − vλa pm

2λa

(
1−

√
1 +

4λ2
avpm

(λa − µa − vλa pm)2

)
.

(A6)
Since u, v ≪ 1, the term in the root can be approximated using
a Taylor expansion. So, substituting the expressions for pa and
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pm, we have

ps ≈ − vλs pm + uλs pa

λs − µs − uλs pa − vλs pm

≈ 1
λs − µs − uλs pa − vλs pm

[
uvλsλa (λm − µm)
λm (λa − µa − vλa)

− vλs (λm − µm)
λm

]
≈ vλs (λm − µm)

λm (λs − µs)

[
uλa

(λa − µa)
− 1
]

=
vλs∆m

λm|∆s|

(
uλa

|∆a|
+ 1
)

.

(A7)
If we assume that aneuploidy is not rare (uλa > |∆a|) then we
have:

ps ≈
uλs

|∆s|
vλa

|∆a|
∆m

λm
. (A8)

Scenario 3: Aneuploid cells are stationary We now assume that
the growth rate of aneuploid cells is close to zero (either positive
or negative), such that (∆a − vλa pm)2 ≪ 4λ2

avpm. We rewrite
eq. (A2) as

pa =
λa − µa − vλa pm + 2

√
λ2

avpm

(
1 + (λa−µa−vλa pm)2

4λ2
avpm

) 1
2

2λa
.

(A9)
Using a following Taylor series expansion for small
(λa − µa − vλa pm)2 /4λ2

avpm,

(
1 +

(λa − µa − vλa pm)2

4λ2
avpm

) 1
2

= 1 +
(λa − µa − vλa pm)2

8λ2
avpm

+ · · · ,

we obtain the approximation

pa ≈
λa − µa − vλa pm + 2

√
λ2

avpm

[
1 + (λa−µa−vλa pm)2

8λ2
avpm

]
2λa

=
λa − µa − vλa pm + 2

√
λ2

avpm + (λa−µa−vλa pm)2

4
√

λ2
avpm

2λa

=

(
λa − µa − vλa pm + 2

√
λ2

avpm

)2
+ 4λ2

avpm

8λa

√
λ2

avpm

=
4λ2

avpm + 4λ2
avpm

(
1 + λa−µa−vλa pm

2
√

λ2
avpm

)2

8λa

√
λ2

avpm

=
1

2λa

(
λa − µa − vλa pm + 2

√
λ2

avpm

)
.

(A10)

Plugging this in eq. (A3), the survival probability of a population
starting from one sensitive cell is

ps ≈ − 1
λs − µs − uλs pa − vλs pm

[
vλs

λm − µm

λm

+
uλs

2λa

(
λa − µa − vλa pm + 2

√
λ2

avpm

)]
= − 1

λs − µs − uλs pa − vλs pm

[
vλs

λm − µm

λm

+
uλs

2λa
(λa − µa − vλa pm) + uλs

√
v (λm − µm)

λm


≈ − 1

∆s

[
vλs

∆m

λm
+

uλs (∆a − vλa pm)
2λa

+ uλs

√
v∆m

λm

]
.

(A11)
Using the fact that

(∆a − vλa pm)2 ≪ 4λ2
avpm ⇒

∆a − vλa pm

2λa
≪

√
vλa∆m

λm
,

and v ≪ u we obtain:

ps ≈
uλs

|∆s|

√
vλa∆m

λm
. (A12)

Appendix B: Evolutionary rescue probability 11

Using the fact that ∆a − vλa pm ≈ ∆a we write the condition
(∆a − vλa pm)2 ≪ 4λ2

avpm as:

∆2
a ≪ 4λ2

avpm ⇒ −1 ≪ ∆aT∗ ≪ 1,

where T∗ = (4vλ2
a∆m/λm)−1/2. Substituting eqs. (A5), (A8)

and (A12) into eq. (1), the evolutionary rescue probability can be
approximated by

prescue ≈
1− exp

[
− uλa
|∆s |

vλs
|∆a |

∆m
λm

N
]

, ∆aT∗ ≪ −1,

1− exp
[
− uλs
|∆s |

√
vλa∆m

λm
N
]

, −1 ≪ ∆aT∗ ≪ 1,

1− exp
[
− uλs
|∆s |

∆a
λa

N
]

, 1 ≪ ∆aT∗.

(B1)

Appendix C: Evolutionary rescue time 12

We first calculate the expected time for the appearance of the first 13

mutant that rescues the cell population. This can occur either 14

through the evolutionary trajectory sensitive→mutant or through1

the trajectory sensitive→aneuploid→mutant. We start with the2

former.3

Assuming no aneuploidy (u = 0), we define Tm to be the time4

at which the first mutant cell appears that will avoid extinction5

and will therefore rescue the population. Note that if extinction6

occurs, that is the frequency of mutants after a long time is zero,7

m∞ = 0, then it is implied that Tm = ∞, and vice versa if Tm < ∞8

then m∞ > 0.9

The number of successful mutants generated until time t
can be approximated by an inhomogeneous Poisson process
with rate Rm (t) = vλs pmst, where st = Ne∆st is the number of
sensitive cells at time t. Note that∫ t

0
Rm(z)dz = vλs pm N

exp[∆st]− 1
∆s

≈ vλs pm Nt, (C1)
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by integrating the exponential and because 1
∆s

(exp[∆st]− 1) =10

t + O
(
∆st2). The probability density function of Tm is thus11

Rm (t) exp
(
−
∫ t

0 Rm(z)dz
)

(Allen 2010). Therefore, the prob-12

ability density function of the conditional random variable 13

(Tm | Tm < ∞) is fm(t) = Rm (t) exp
(
−
∫ t

0 Rm(z)dz
)

/prescue. 14

15

We are interested in the mean conditional time, τm =
E [Tm | Tm < ∞], which is given by

τm =
∫ ∞

0
t fm(t)dt =

∫ ∞
0 tRm(t) exp

(
−
∫ t

0 Rm(z)dz
)

dt

prescue
, (C2)

Therefore, plugging eqs. (1) and (C1) in eq. (C2),

τm =
∫ ∞

0
tvλs Ne∆st e−vλs Npm

e∆s t−1
∆s

1− (1− ps)N dt ≈
∫ ∞

0
tvλs Ne∆st e−vλs Npmt

1− e−Nps
dt.

(C3)

Figure S2b shows the agreement between this approximation 16

and simulation results. 17

Assuming aneuploidy is possible (u > 0), we define Ta to be 18

the time at which the first mutant cell appears that will rescue1

the population. We are interested in the mean conditional time,2

τa = E [Ta | Ta < ∞].3

When Nuλs/|∆s| ≫ 1 the aneuploid frequency dynamics is
roughly deterministic and therefore can be approximated by

at ≈
Nuλs

∆s − ∆a

(
e∆st − e∆at

)
. (C4)

As a result, the number of successful mutants created by direct
mutation and via aneuploidy can be approximated by inhomo-
geneous Poisson processes with the rates

n1 (t) = vλa pmat,

r2 (t) = vλs pmst,

and the expected number of successful mutants created by direct
mutation and via aneuploidy until time t is given by:

Ma (t) = vλa pm

∫ t

0
azdz =

uvλsλa Npm

∆s − ∆a

(
e∆st − 1

∆s
− e∆at − 1

∆a

)
,

(C5)

Mm (t) = vλs pm

∫ t

0
szdz = vλs Npm

e∆st − 1
∆s

. (C6)

For large initial population sizes we assume that the two
processes are independent and as a result, they can be merged
into a single Poisson process with rate Ra(t) = (n1 + r2) (t). The
mean time to the appearance of the first rescue mutant is

τa =

∫ ∞
0 tRa(t) exp

(
−
∫ t

0 Ra(z)dz
)

dt

prescue

=
∫ ∞

0
t (vλa pmat + vλs pmst)

×
exp

[
− uvλsλa Npm

∆s−∆a

(
e∆s t−1

∆s
− e∆a t−1

∆a

)
− vλs Npm

e∆s t−1
∆s

]
(
1− e−Nps

) dt,

(C7)

which we plot in Figure S2a as a function of the initial population4

size, N.5

Paradoxically, we observe from Figure S2 that the mean time6

of a rescue mutation to appear is significantly shorter for the7

scenario when u = 0 when compared to the scenario u > 0,8

however this can be explained by the fact this mean time is9

conditioned on evolutionary rescue and, as a result, aneuploidy10

increase the window of opportunity in which a rescue mutation11

could appear thus increasing the mean time as well (Figure 2).12

Let N∗
a and N∗

m be the threshold population size above which
evolutionary rescue through aneuploidy or direct mutation, re-
spectively, is likely. The mean time τa can be written as:

τa =
∫ ∞

0
t f (t)dt =

∫ ∞

0
t

d
dt

F(t)dt = −
∫ ∞

0
t

d
dt

S(t)dt

= − [tS(t)]∞0 +
∫ ∞

0
S(t)dt

=
∫ ∞

0
S(t)dt,

where f (t), F(t) and S(t) are the probability density function,
cumulative distribution function and survival function. In our
case, S(t) = exp

(
−
∫ t

0 Ra(z)dz
)

. Additionally, for N ≫ N∗
m we

have 1− e−Nps ≈ 1 and, as a result, we have:

τa =
∫ ∞

0
e−
∫ t

0 Ra(z)dz dt

=
∫ ∞

0
exp

[
−uvλsλa Npm

∆s − ∆a

(
e∆st − 1

∆s
− e∆at − 1

∆a

)

−vλs Npm
e∆st − 1

∆s

]
dt,

and we use the following Taylor series expansions:

e∆st − 1
∆s

=
1 + ∆st + O(t2)− 1

∆s
= t + O(t2).

e∆at − 1
∆a

=
1 + ∆at + O(t2)− 1

∆a
= t + O(t2),

to obtain a simpler approximation for τa:

τa ≈
∫ ∞

0
e−vλs Npmt dt =

1
vλs Npm

. (C8)

If N ≪ N∗
a then the probability distribution of evolutionary

rescue time is skewed toward small values (i.e. evolutionary
rescue occurs conditioned on it happening). As a result, we
have:

e∆st − 1
∆s

=
1 + ∆st +O

(
(∆st)2

)
− 1

∆s
= t +O

(
∆st2

)
e∆at − 1

∆a
=

1 + ∆at +O
(
(∆at)2

)
− 1

∆a
= t +O

(
∆at2

)
We observe that the first term in the exponential in eq. (C7) can
be approximated to be zero and the second term as -vλs Npmt
where t ≪ 1. As a result, we can approximate:

exp

[
−uvλsλa Npm

∆s − ∆a

(
e∆st − 1

∆s
− e∆at − 1

∆a

)
− vλs Npm

e∆st − 1
∆s

]
∼ 1

Additionally, since N ≪ N∗
a ≪ N∗

m, evolutionary rescue is more
likely to occur through the trajectory sensitive → aneuploid →
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mutant. As a result, we can write Equation (C7) as:

τa ≈
∫ ∞

0 tvλa pmat dt
1− e−Nps

≈ uvλaλs pm|∆s + ∆a|
ps∆2

a∆2
s

=
1
|∆s|

+
1
|∆a|

, (C9)

where in the last line we used the fact that 1/ps = N∗
a and13

Equation (3).14

If a fraction f of the cancer cells are aneuploid when the drug
is administered then the expected number of successful mutants
generated until time t is given by:

n f
1 (t) = vλa pm

∫ t

0
azdz

= (1− f )
uvλsλa Npm

∆s − ∆a

(
e∆st − 1

∆s
− e∆at − 1

∆a

)

+ f vλa Npm
e∆at − 1

∆a
,

r f
2 (t) = vλs pm

∫ t

0
szdz

= (1− f ) vλs Npm
e∆st − 1

∆s
,

and the mean evolutionary rescue time is given by:

τ̃a =

∫ ∞
0 tR f

a (t) exp
(
−
∫ t

0 R f
a (z)dz

)
dt

prescue
, (C10)

where R f
a (t) = n f

1 (t) + r f
2 (t) and prescue = 1 −15

exp [− (1− f ) ps N − f pa N]. We plot our approximation in Fig-16

ure S9 together with simulated data.17

Appendix D: Recurrence time18

In the following, we assume aneuploid cells are tolerant
(∆aT∗ ≪ −1) and frequent enough to affect the evolution of
drug resistance (uλa ≫ max (−∆a, 1/T∗)). We define the pro-
liferation time τ

p
a to be the expected time for the number of

resistant cells to grow to the initial tumor size N. The number of
rescue lineages generated by the sensitive population is given
by eq. (C5) (see Figure S3),

n1 (∞) =
uvλsλa Npm

|∆s||∆a|
+

vλs Npm

|∆s|
=

N
N∗

a
+

N
N∗

m
.

We use eqs. (2) and (3) to write N∗
a = |∆s | |∆a |

uvλsλa pm
and N∗

m = |∆s |
vλs pm

.19

We distinguish between small, intermediate, or large tumors.
In small (N ≪ N∗

a ≪ N∗
m) tumors, we have at most one lin-

eage that rescues the cancer cell population. As a result, the
recurrence time is given by (Avanzini and Antal 2019)

τr
a ≈ τa +

log (pm N)
∆m

. (D1)

The factor pm in the second term of eq. (D1) occurs because the
lineage is conditioned to survive stochastic extinction and the
time to reach N is shorter compared to the scenario where the
lineage is not conditioned to survive stochastic extinction (Orr
and Unckless 2014; Maynard Smith and Haigh 1974). Therefore,
in small tumors, we can substitute eq. (C9) for τa in eq. (D1) to
get (blue line in Figure S7)

τr
a ≈ 1/|∆a|+ log (pm N)/∆m.

In intermediate tumors, N∗
a << N << N∗

m, the sensitive20

cell population generates a number of rescue lineages in a short21

period of time after τa. The time it takes the rescue lineages to22

reach the initial population size N is small compared to the time23

it took the lineages to appear. Therefore, the mean recurrence24

time can be approximated by substituting eq. (C7) for τa in25

eq. (D1) (black line in Figure S7).26

In large tumors, N∗
m ≪ N, the sensitive population produces

a large number of rescue lineages in a short period of time. As a
result, the recurrence time is obtained by solving the following
system of ordinary differential equations (ODEs),

ds
dt

= ∆ss,

da
dt

= ∆aa + uλss,

dm
dt

= ∆mm + vλaa + vλss.

(D2)

Solving the system of ODEs for initial condition
(s(0), a(0), m(0)) = (N, 0, 0) we obtain:

m(t) =
Nuvλaλs

∆a − ∆s

[
e∆mt − e∆at

∆m − ∆a
− e∆mt − e∆st

∆m − ∆s

]
+ Nvλs

e∆mt − e∆st

∆m − ∆s
.

We obtain τr
a by solving the above equation for time t = τr

a at
which the number of mutant cells reaches N, that is, we solve
m (τr

a ) = N,

1 =
uvλaλs

∆a − ∆s

[
e∆mτr

a − e∆aτr
a

∆m − ∆a
− e∆mτr

a − e∆sτr
a

∆m − ∆s

]
+ vλs

e∆mτr
a − e∆sτr

a

∆m − ∆s
.

(D3)
Equation (D3) is a transcendental equation that cannot be

solved exactly but we can obtain an approximation by noting
that the tumor size N is large, and because the sensitive and
aneuploid cells have negative growth rates, almost all of the
growth needed to rebound to size N will be by mutant cells.
Mathematically, this corresponds to e∆mτr

a being much larger
than the other exponential terms, e∆sτr

a and e∆aτr
a . Equation (D3)

can then be rewritten as

1 ≈ vλse∆mτr
a

∆m − ∆s

(
uλa

∆m − ∆a
+ 1
)

.

Assuming that rate of aneuploidy is not so high that it over-
whelms the aneuploids’ growth disadvantage relative to the
mutants (uλa ≪ ∆m − ∆a), we can neglect the first term in
parentheses above, yielding (green line in Figure S7)

τr
a ≈

1
∆m

log
(

∆m − ∆s

vλs

)
. (D4)

We emphasize that in this case the population is large enough to27

produce mutants without needing to pass through aneuploidy28

(N ≫ N∗
m), and so the terms arising from the evolutionary29

trajectory sensitive → aneuploid → mutant do not contribute to30

the above approximation.31

Additionally, we note that if we are interested in the time until
the tumor reaches a detectable size M then our above analysis is
valid but in eq. (D1) we change

τr,M
a ≈ τa +

log (pm M)
∆m

, (D5)
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and eq. (D4) becomes

τr,M
a ≈ 1

∆m
log
(

M (∆m − ∆s)
vλs N

)
, (D6)

which we plot in Figure S8 and observe that our approximations32

are in agreement with simulations.33

Appendix E: Distribution of evolutionary rescue time34

The probability that a successful mutant has been generated by
time t is given by:

P (rescue, t) = P (Ta < t)
= 1− exp {− [n1 (t) + r2 (t)]}

= 1− exp

{
−
[

uvλsλa Npm

∆s − ∆a

(
e∆st − 1

∆s
− e∆at − 1

∆a

)

+vλs Npm
e∆st − 1

∆s

]}
,

where Ta is the time at which the first mutant cell appears that35

will avoid extinction and which was defined in Appendix C.36

As a result, the probability that a successful mutant has not
been generated by time t is:

1− P (rescue, t) = exp

{
−
[

uvλsλa Npm

∆s − ∆a

(
e∆st − 1

∆s
− e∆at − 1

∆a

)

+vλs Npm
e∆st − 1

∆s

]}
. (E1)

Appendix F: Distribution of recurrence time37

The probability distribution of the time that a lineage, consisting
initially of a single cell, will reach size N as time t is given by

the Gumbel distribution Gumbmax

(
log Npm

∆m
, 1

∆m

)
(Avanzini and

Antal 2019) with probability density function:

G (t) = e−pm Ne−∆m t
.

A mutant lineage initiated at time s, through aneuploidy, at rate
vλa pmas reaches size N before time t with probability G (t− s)
where s ≤ t. As a result, the number of successful mutant
lineages which reach size N by time t can be approximated by
inhomogeneous Poisson random variable with rate:

r (t) = vλa pm

∫ t

0
asG (t− s) ds

where as is aneuploid population size at time s defined in
eq. (C4). The proliferation time is defined as the first time the
size of all lineages reaches N. When N ≪ |∆s||∆a|/uvλsλa pm
there is at most a single mutant lineage that will survive and
reach size N (Figure S3) and the probability that the size of that
lineage has not reached N by time t is given by:

P (mt ≤ N) = exp [−r (t)]

= exp
[
−Nuvλsλa pm

∆s − ∆a

∫ t

0

[
e∆s x − e∆a x

]
e−pm Ne−∆m (t−x)

dx
]

.

(F1)

When N ≫ |∆s||∆a|/uvλsλa pm the dynamics of the cancer cell
populations is deterministic and approximated by the system

of ODEs shown in eq. (D2). As a result, the size of the mutant
cell population will always be below N until time τr

a and will
always be greater after:

P (mt ≤ N) = 1− H (t− τr
a ) , (F2)

where H(x) is the Heaviside function:

H (x) =

{
0, x < 0,
1, x ≥ 0.

We plot eq. (F1) and eq. (F2) in Figure 6b and compare with38

stochastic simulations and observe that our approximations are39

in agreement.40

We observe that for N = 107 our formula overestimates the41

probability that the mutant population will be smaller than N42

at time t. This can be explained by the fact that N = 107 is an43

intermediary scenario where the sensitive population produces44

a number of rescue lineages that is greater than one but still45

sufficiently small such that stochasticity plays an important role46

in the population dynamics. As a result, the number of mutant 47

cancer cells will reach N faster than the scenario with a single 48

mutant lineage. Additionally, we observe from Figure 6b that 49

the probability of the mutant cell population reaching size N 50

is approximately zero before time τr
a which is the recurrence 51

time for the deterministic scenario. This can be explained as 52

follows: in the deterministic scenario there is a sufficient number 53

of lineages produced such that there exists a lineage where each 54

descendant will only reproduce and not die; the time it takes 55

for this lineage to reach N is the lower bound for the time of all 56

other lineages to reach N and this time cannot be smaller than τr
a 57

by definition. Given that for small values of N we expect that at 58

most a single lineage will rescue the tumor, this lineage cannot 59

reach N before τr
a for the deterministic scenario eq. (D4).1

From eq. (F1) we obtain the distribution of the recurrence
time conditional of evolutionary rescue:

f (t) =
d
dt

[
P (mt ≥ N)

prescue

]
= r′ (t)

exp [−r (t)]
prescue

, (F3)

which we plot in Figure S4 and compare with simulations. We2

note that in the scenario N ≫ |∆s||∆a|/uvλsλa pm the distribu-3

tion becomes the Dirac δ-function (Barton 1989).4

Appendix G: Bootstrap5

For the mean times the 95% confidence interval is obtained 1101

through bootstrapping in the following steps: (1) we simulate 1102

T 100 times; (2) we sample with replacement which we store in 1103

T′; (3) for each element of this sample we obtain τ = E [T′]; (4) 1104

we repeat steps (2)-(3) 100 times to obtain τ and we select the 1105

upper and lower limits such that 95% of the values of τ lie in the 1106

interval given by the bounds. 1107

For the threshold tumor sizes the 95% confidence interval 1108

is obtained through bootstrapping in the following steps: (1) 1109

we simulate prescue 100 times; (2) we sample with replacement 1110

which we store in S; (3) for each element of this sample we obtain 1111

N∗
a = 1/ps using ps = −1/Ne log (1− S̄) where S̄ is the mean 1112

of S and Ne is an arbitrary value of the initial population size we 1113

selected in order to calculate prescue; (4) we repeat steps (2)-(3) 1114

100 times to obtain N∗
a and we select the upper and lower limits 1115

such that 95% of the values of N∗
a lie in the interval given by the 1116

bounds. 1117

For the ratio of the threshold tumor sizes the 95% confidence 1118

interval is obtained through bootstrapping in the following steps: 1119
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(1) we simulate prescue 100 times for both the scenario when 1120

f = ũλs/c and f = 0; (2) we sample with replacement which 1121

we store in S f and S0; (4) for each element of S0 we obtain 1122

N∗
a = 1/ps using ps = −1/Ne log (1− S̄) where S̄ is the mean 1123

of S0 and Ne is an arbitrary value of the initial population size 1124

we selected in order to calculate prescue; (5) for each element of 1125

S f we obtain Ñ∗
a = 1/pa using pa = − f /Ne log (1− S̄) where 1126

S̄ f is the mean of S f and Ne is an arbitrary value of the initial 1127

population size we selected in order to calculate prescue; (6) we 1128

repeat steps (2)-(5) 100 times to obtain Ñ∗
a /N∗

a and we select the 1129

upper and lower limits such that 95% of the values of Ñ∗
a /N∗

a 1130

lie in the interval given by the bounds. 1131

Appendix H: Aneuploidy-induced mutation rate 1132

The mutation rate may be increased in aneuploid cells. To ac-
count for an increased mutation rate in cells with the aneuploidy
that provides a fitness advantage in the presence of a drug, we
extend our model such that sensitive cells mutate with rate vs
and aneuploid cells mutate with rate va. Note that sensitive cells
include those cells with any other aneuploidy, including those
that may cause an increased mutation rate, and therefore those
cases are already covered by the model presented in the main
text. We then calculate the survival probabilities ps, pa and ps as
in Appendix A,

1− ps =
µs

λs + µs + uλs + vsλs

+
uλs

λs + µs + uλs + vsλs
(1− pa) (1− ps)

+
λs

λs + µs + uλs + vsλs
(1− ps)2

+
vsλs

λs + µs + uλs + vsλs
(1− pm) (1− ps) ,

1− pa =
µa

λa + µa + vaλa

+
vaλa

λa + µa + vaλa
(1− pm) (1− pa)

+
λa

λa + µa + vaλa
(1− pa)2 ,

1− pm =
µm

λm + µm
+

λm

λm + µm
(1− pm)2 .

(H1)

Solving the above equations we obtain

ps =
λs − µs − uλs pa − vsλs pm

2λs

+

√
(λs − µs − uλs pa − vsλs pm)2 + 4λ2

s (upa + vs pm)
2λs

,

pa =
λa − µa − vaλa pm +

√
(λa − µa − vaλa pm)2 + 4λ2

ava pm

2λa
,

pm =
λm − µm

λm
.

(H2)
The threshold population size can be written as

N∗
a ≈

|∆s|
uλs

·


|∆a |
vaλa

λm
∆m

, ∆aT∗ ≪ −1 (tolerant aneuploids),
2λaT∗, −1 ≪ ∆aT∗ ≪ 1 (stationary aneuploids),
λa
∆a

, ∆aT∗ ≫ 1 (resistant aneuploids),
(H3)

where T∗ =
(
4vaλ2

a pm
)− 1

2 . This is the same as in eq. (3) except 1133

with va instead of v. 1134

The probability of evolutionary rescue is

prescue = 1− (1− ps)N ≈ 1− e−Nps = 1− e−N/N∗
a , (H4)

which we plot in Figure S10 for multiple values of va. We note 1135

that when va = 10−5, we are in the case of stationary aneuploidy 1136

(i.e., ∆aT∗ ≈ −0.55 ). 1137
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